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Lattice model for the calculation of the angle of repose from microscopic grain properties
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We study a simple lattice model for granular heap, which aims at calculating the macroscopic angle of
repose from the microscopic grain properties. The model includes the effects of dissipation of the energy in the
particle-particle collisions, and sticking of the particles to the pile. We obtain that, due to the discretization of
the space, the angle of repose of the pile behaves as a completedevil’s staircaseas a function of the model
parameters. We present numerical and analytical considerations which characterize the properties of this
staircase.@S1063-651X~98!09606-8#

PACS number~s!: 81.05.Rm
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I. INTRODUCTION

The heap of dry granular material is of interest for pra
tical applications, but also as a paradigm in fundamental
search. Typical questions include~size or shape! segregation
@1–3#, avalanches@4,5#, and the shape of the heap in two a
three dimensions@6–8#. Indeed, sandpiles are almost perfe
cones with a well-defined angle of repose, which depends
gravity and on the characteristics of the material, includ
density @9#, humidity @10#, packing history, and boundar
conditions @8#. However, to our knowledge, no systema
experimental study of the dependence of the angle of rep
on the material properties, like the restitution coefficient,
shape, or the surface roughness of the grains, has been
formed. It is also a striking fact that the calculation of t
macroscopic angle of repose from the microscopic proper
of the grains has eluded solution. Additionally, watchi
carefully, one notices that at the very bottom of a tw
dimensional heap the surface profile has a logarithmic c
rection to this simple conelike behavior@6#.

Understanding these phenomena poses a major chall
for research in granular media. In this respect simple mod
have an important role by allowing one to investigate
system in great detail. They also often serve as a basis
wards more realistic simulations of the granular systems
fact, the use of such simple systems has already reve
many successful characterizations of the crucial interact
underlying different phenomena; for example, Refs.@1–3,6#.

In this paper we study a simple lattice model for a pile
dry granular media~say sand, for example!. The phenomeno-
logical model includes the considerations of the dissipat
of energy in the particle-particle collisions, and the sticki
of the particles to the pile. At the steady state this determ
istic model evolves to a pile, where the angle of repose
pends on the dissipation and the shape of the granula
Thus the present model may help to understand how s
properties affect the angle of repose in heaps of granula
To our knowledge, this constitutes the first model which
tempts to calculate the macroscopic angle of repose dire
from the microscopic grain properties.

In our model, we find that, due to the discretization, t
angle of repose of the pile behaves as a completedevil’s
PRE 581063-651X/98/58~1!/672~9!/$15.00
-
e-

t
n

g

se
e
er-

s

-
r-

ge
ls
e
to-
In
led
s

f

n

-
e-
es.
ch
s.
-
tly

staircase, which has the peculiar property that the functio
varies only on a set of zero linear measure. Such stairc
have been encountered repeatedly in many contexts of
different physical nature: for example, current-voltage ch
acteristics of Josephson junctions@11,12#, superfluid density
in 4He thin films @13#, and polytypic periodic structures in
several metallic compounds, such as Ag3Mg, CuAu, and
Cu3Pt @14#. For a discussion about devil’s staircases in the
and other, physical systems see Ref.@15#. There are also a
least two theoretical models where such devil’s stairca
emerge. The first is a one-dimensional~1D! Ising system
with long-range repulsive interactions@16#, for which the
ratio of the up and down spins varies as a complete dev
staircase as a function of the external field. The second is
axial next-nearest-neighbor Ising~ANNNI ! model @17#,
which may qualitatively explain the polytypic structures
the above mentioned metallic compounds@18#.

In this work we present numerical and analytical cons
erations which characterize the properties of the pres
staircase. We find that the sizes of the steps on the sur
depend on the properties of the granulates in a complica
manner, and this results in a fascinating hierarchical struc
in the angle of repose. We also discuss some analogies w
arise between the present model and the Ising model m
tioned above.

The rest of this paper is organized as follows. We int
duce the model in Sec. II, where the basic concepts are
cussed in more detail. This section is followed by the p
sentation of our numerical and analytical results in Sec.
The connection between the current model and the o
dimensional Ising model are discussed in Sec. IV. Fina
the paper is concluded in Sec. V.

II. MODEL

For simplicity, we consider a one-dimensional pile whe
the particles are located atx50,1,2, . . . , measured in the
units of the particle diameter~see Fig. 1!. We monitor the
height of the pileh(x), which also denotes the current num
ber of the particles at the positionx, and, in particular, the
macroscopic angle of the reposeg, which is the average
slope of the pile.
672 © 1998 The American Physical Society
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There is a constant flow of particles to the left hand ed
i.e., to x50, for which it is convenient to scale time suc
that the rate of the particle flow equals one particle per u
time. These particles enter the system with a fixed ini
energye0. The initial energy is assumed to be independen
h(0), and sufficiently large as compared to other ener
scales in the model~see below!, which corresponds to an
experimental situation where the particles are dropped w
above the pile.

The evolution of the pile is determined by energetic co
siderations. Consider a particle which sits at positionx with
energyei ~for illustration, see Fig. 1!. In order to propagate
to location x11, the particle has to overcome a potent
barrierU, which simulates the friction between the movin
particle and the pile. ThusU mainly considers the roughnes
and the shape of the particles. Should the particle succee
moving to x11, it would ~typically! gain energy in the
gravitational field byDh[h(x)2h(x11), but a fraction of
the total energy becomes dissipated in the collision with
particles in the pile atx11. This energy dissipation in th
particle-particle collisions is determined by the coefficient
the restitutionr<1, which is a material dependent consta
Thus the energy of the particle after moving tox11 would
be given by

ei85~ei1Dh!r . ~1!

This energy is compared with the potential barrierU. If ei8
>U, the particle propagates tox11 conserving its energy
and similar considerations are repeated in order to decide
may propagate forwards. However, ifei8,U, the particle
sticks in the current location,h(x) is increased by unity, and
a new particle is released to the system atx50.

For given (r ,U), this deterministic model evolves into
steady state, from which physical observables, such as
global angle of reposeg(r ,U), can be determined. Within

FIG. 1. Schematic view of the evolution of the pile.~a! Gray
particle enters the system with the energye1, and black particle is
falling down the pile with energye2. As shown by arrows, the
particles try to propagate to the next location in the pile.~b! The
particles gain energy in the gravitational field, but a fraction of
energy is dissipated in the particle-particle collisions. Final ene
ei85(ei1Dhi)r ( i 51,2), is compared to the threshold valueU.
Heree18.U and gray particle moves on tox51, bute28,U, hence
the black particle remains in its previous position.~For illustration
only, in practical simulations we follow only one particle at a time!
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this simple model, the dependence ofg(r ,U) gives informa-
tion on how the angle of repose depends on the propertie
the granular system, namely, the shape (U) and dissipation
(r ) between the granulates.

III. RESULTS

The most accessible physical observable is the angle
repose, which characterizes the shape of the pile, as a f
tion of the physical parametersg5g(r ,U). To determine
g(r ,U), we have performed numerical simulations as well
analytical calculations.

A. Numerical results

We performed extensive numerical simulations collect
data for several values of (r ,U) by fixing r and varyingU.
Our first observation is that, indeed, the model evolves
wards a steady state which has a well-defined macrosc
angle of repose, whose value depends on the physical c
acteristics of the grains. In addition, our simulations sh
that g does not depend on the initial energye0>U, as long
as it is fixed. The effects which arise ife0 is chosen from a
~say, bimodal! distribution are discussed elsewhere@19#.

The results forg(r ,U), as a function ofU(12r )/r , are
shown in Fig. 2. A striking feature of this figure is thatg
shows a constant value for a wide range ofU for a fixedr . In
fact, these numerical results indicate thatg(r ,U) is de-
scribed by a devil’s staircase, which varies only on a se
zero linear measure. This is due to the fact that since
height of the pile and the positionx are restricted to intege
values,g may achieve only rational values. However, sin
there is no othera priori restriction forg, we assume below
that g may have all rational values.

For illustration, Fig. 3 shows a typical steady state pro
of the sandpile. It can be seen thatg depends on the steps o
the surface, i.e., regions whereDh.0. Specifically, we find
numerically that the steady state of the model is a perio
structure for which the surface profile descends by repea
one ‘‘unit cell’’ of steps along the pile. The angle of repo
is determined by the number (N) and the sizes of these step
in the unit cell of lengthL.

B. Analytical results

In this subsection we present our analytical calculation
theg(r ,U). We start by deriving the connection between t
sizes of the steps of the surface and the magnitude ofg ~see
Sec. III B 1!. This leads us to conclude that for noninteg
values ofg, int(g)5 int@U(12r )/r #, where int(x) gives the
integer part ofx. Therefore, for simplicity, we continue with
a detailed analysis of the case 0,g,1 ~see Sec. III B 2!.
These calculations are performed in the ‘‘energy spac
where we consider the energy of a test particle which fa
down the pile. Guided by our numerical simulations, we p
tulate that these energies form a periodic sequence$ei%,
which has the same periodicity as the surface profile. Us
this assumption we are able to form a closed set of equati
from which the behavior ofg(r ,U) can be determined. We
verify numerically that this theoretical reasoning is in agre
ment with the simulation results. Additionally, the conside

e
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FIG. 2. ~a! Numerically measured angle of reposeg(r ,U) as a function ofU(12r )/r for r 50.3 (d, dashed line!, 0.5 (s, dashed-dotted
line!, 0.7 (l, dotted line!, andr 50.9 (L, solid line!. The lines display theg(r ,U) as calculated from the numerical iteration of Eqs.~23!
and~24! ~see the text for details!. In particular, the data agree well with Eq.~3!, which givesn21,g,n asn21,U(12r )/r ,n. ~b! The
same data as in~a!, but enlarged to show the range 0,g<1 in more detail. The lines are from numerical iteration of Eqs.~4! and~7!. ~c!

The same data as in~b!, but g plotted vsŪ5U(12r l)/r l 11 in order to show the structure of the staircase in the ranger l 11/(12r l 11)

<U<r l /(12r l), wherel 5 int$ ln@U/(U11)#/ln r%, more clearly. From the top to bottom, the data havel 51,2,3. If 1,Ū,1/r , g51/l , but

for (12r l)/(12r l 11),Ū,1 we find a nontrivialg in the range 1/(l 11),g,1/l .
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ations of Sec. III B 2 can be straightforwardly generaliz
for all g.0. These extensions to generalg are summarized
in Sec. III B 3.

1. The connection between the step sizes andg

Consider a particle which is falling down the surface a
encounters a step of heightn21>0. The condition that the
particle remains at the current positioni and creates a step o
height n is given by ei85(ei1Dh)r 5(ei1n21)r ,U.
However, we know thatei>U because the particle has be
able to propagate to locationi . Using this information, we
find the estimate,@U1(n21)#r ,U, which yields that

U.
~n21!r

12r
~2!
before steps of sizen can be generated. Equation~2! also
states that the largerU the larger steps there are on the su
face. In particular, atU5@(n21)r #/(12r ) we have only
steps of sizen21, since no steps of sizen can be created
yet, but all the smaller steps are growing since there i
possibility that a particle may not gain enough potential e
ergy to overcome the energy barrier. By induction we ded
that for

~n21!r

12r
,U,

nr

12r
, ~3!

the steady state surface has a mixture of steps of sizen
21 andn. The proper physical picture of the inequality E
~3! indicates that forU5(n21)r /(12r ) all sites have a step
of size n21, i.e., g5n21. However, for largerU, also
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PRE 58 675LATTICE MODEL FOR THE CALCULATION OF THE . . .
steps of sizen appear, and their density increases asU grows
towards the upper limit of inequality Eq.~3!, i.e., g→n as
U→nr/(12r ). These results agree well with our numeric
data shown in Fig. 2~a!.

Equation~3! indicates that the sizes of the steps on
surface are determined byU. Since all the sites have a ste
of sizen21 or n, this also demonstrates that in large leng
scales the steady state surface is very smooth~see Fig. 3!,
and the average angle of reposeg is a well-defined quantity.

2. Analysis of the case 0<g<1

(a) Formulation of the problem in terms of the function
iteration. We now turn to a more detailed analysis f
0,g,1 @see Fig. 2~b!#. As mentioned above, we find nu
merically that the typical feature of the model is that t
steady state of the pile forms a periodic construction, wh
there areN>1 steps, of size one~since 0,g,1), distrib-
uted along a basic unit of lengthL. Obviously we haveg
5N/L, whereN andL do not share common factors becau
L is chosen to be the size of the shortest repeatable
Now, it is important to notice that such a periodic stea
state surface can be quantitatively characterized by cons
ing the energies of a test particle which is falling down t
surface. This test particle is allowed to propagate through
unit cell, and we consider specifically the energyei on the
top of thei th step in the unit cell~see Fig. 4!. Guided by our
numerical simulations, we expect that the sequence of e
gies $ei% has the same periodicity ofN steps as the surfac
profile. Thus we need to solve the recursion relation forei ,

U<ei 115~ei11!r l i,U/r , ~4!

where l i is the distance between the (i ,i 11)th steps,L
5( i 51

N l i , using periodic ‘‘boundary condition’’

eN115e1 , ~5!

FIG. 3. A simulated surface profile after 106 particles. In this
example (r ,U)5(1/2,0.43) which yieldsg55/7. The inset shows
an enlarged portion of the surface for 500,x,520, which reveals
the periodic small scale structure of the surface in more detail.
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which describes the periodicity of the surface in the ‘‘ener
space.’’ We emphasize that our assumption, Eq.~5!, is a
strong relation which determines the number of algebraic
independent variables in the sequences$ei%, $ l i%.

We can solve inequality~4! for l i , and find that the dis-
tances between the steps are determined byei ,

ln@U/~ei11!#

lnr
21, l i<

ln@U/~ei11!#

ln r
. ~6!

Becausel i ’s may have only integer values, Eq.~6! yields

l i5 intS ln@U/~ei11!#

ln r D . ~7!

For any (r ,U), the angle of repose

g~r ,U !5
N

(
i 51

N

l i

~8!

is given by solving Eqs.~4!, ~5!, and ~7! for unknowns
$N,l i ,ei%.

(b) Explicit solution of Eqs. (4), (5), and (7). Unfortu-
nately, due to the fact thatl i may have only integer values
the explicit solution of Eqs.~4!, ~5!, and ~7! for g(r ,U)
5g̃($N,l i ,ei%) is possible only in the simplest cases. In pa
ticular, if N51,

U<e25~e111!r l 15e1,U/r . ~9!

We can solve Eq.~9! similarly to Eq.~6!, and using the fact
that U<e1<U/r , we find

ln@U/~U1r !#

ln r
, l 1<

ln@U/~U11!#

ln r
, ~10!

FIG. 4. Notation used in the analytic calculations. This exam
corresponds to the simulated surface shown in Fig. 3. The unit
of length L57 hasN55 steps, which are labeled using indexi
51, . . . ,N. These steps have distancesl i , which obeyL5( l i ;
herel 15 l 25 l 451, andl 35 l 552. The energy of a test particle o
the top of thei th step is denoted byei . We aim at finding a periodic
solution for the energies using the boundary condition Eq.~5!.



ey

t
n
is
s

n

e

re
f
io
e

f
n
se

a
ac

by

e
a

ur-
e

nct
re-
ent
ur-

-

st
i-

(
hat

e

l.

e.

s

676 PRE 58J. J. ALONSO, J.-P. HOVI, AND H. J. HERRMANN
e15
r l 1

12r l 1
. ~11!

Sincel 1 may have only integer values, Eq.~10! implies that

l 15g215 l[ intS ln@U/~U11!#

ln r D , ~12!

given that the periodic boundary conditions,U<e25e1
5r l /(12r l),U/r , are satisfied, i.e., the barrier has to ob

Umin~1/l !5r
r l

12r l
,U<

r l

12r l
5Umax~1/l !. ~13!

By inspection one realizes that Eq.~13! is equivalent to the
condition that there exists an integerl , which satisfies Eq.
~10!. If such an integerl exists, Eq.~12! represents the exac
solution for Eqs.~4! and~7!, g215 l . Indeed, our data show
in Fig. 2~c! are fully compatible with this expectation. Th
also shows that at least for the particular ca
$N,l i ,ei%5$1,l ,r l /(12r l)%, the solution of Eqs.~4!, ~5!, and
~7!, i.e., g51/l , depends onU only via the dimensionless
parameterl .

For other values of (r ,U) one needs to find a solutio
with higher periodicity. Since the sequence$ei% is periodic
with a periodN, the recursion relation Eq.~9! can be gener-
alized to

ei5
1

12r L (j 51

j 5N

r xi ,i 1 j , ~14!

wherexi ,i 1 j is the distance between thei th and (i 1 j )th step,
particularly xi ,i 1N5L, and all N energies in the sequenc
$ei% are different. This oscillatory behavior of$ei% is due to
the lack of the matching distancel according to Eq.~10!. In
this case the steps of the surface appear with two diffe
intervals l and l 11, where eachl i may have either one o
these values, depending on that which fulfills the condit
U<ei 115(ei11)r l i<U/r . Such an interplay between th
l i ’s leads to a nontrivial angle of repose (l 11)21,g, l 21 if
r l 11/(12r l 11),U,r @r l /(12r l)# @see Fig. 2~c!#.

(c) The regions of stability for Eqs. (4), (5), and (7). The
trivial solution given in Eqs.~12! and ~13! gives a solid
reason to expect that generally, for fixedr , there is a range o
potential barriers ]Umin ,Umax], which has the same solutio
$N,l i ,ei%, and therefore yields the same angle of repo
However, the explicit solution forUmin,max is possible only
by considering the general form of the sequence$ei%. In the
Appendix we give a formula forUmin,max(g,r ,l ) if g5(1
1p)/@(11p) l 11#, where eitherp or p21 is an integer, but
the general solution~for which p is an arbitrary rational
number! of Umin,maxbecomes very tedious, and not at all th
informative. These complications are mainly due to the f
that we do not know howN could be simply determined
from the grain properties (r ,U).

In this case, however, a lot of information is revealed
considerations of the minimum and maximum values ofei ’s
alone. For this purpose the analysis of the sequence$ei% is
easiest to illustrate using a geometrical construction. For
ample, Fig. 5 shows the result of the computer simulation
e

nt

n

.

t
t

x-
t

(r ,U)5(1/2,0.43), which parameters give the depicted s
face profile withg55/7. We take every step and draw a lin
through the hip of that step with slope2g. In this example,
this kind of the procedure gives that there are five disti
parallel lines which are tangential to the surface. This rep
sents the fact that five consecutive steps, or five differ
energiesei , define the smallest repeatable unit of the s
face. It is easy to see that in the general case there areN such
lines, which represent theN different energies in the se
quence$ei%. In particular, since the energy increases~de-
creases! if l i5 l ( l i5 l 11), one realizes that the minimum
~maximum! energies of$ei% are represented by the highe
~lowest! lying lines. By inspection we find that this geometr
cal construction shows that generallyxi ,i 1 j , for j ,N, may
have two values, eitherxi ,i 1 j5d5 int$ j /g% or d11, depend-
ing on whether the corresponding line cuts the tip of thei
1 j )th step below or above. However, one should note t
since the lines cut the tip of a step exactly after everyN steps
we have alwaysxi ,i 1N5L. Let us now consider specifically
the minimum and maximum energies which have

xi ,i 1 j5 intS j

g D11 for all j ,N, if ei5min$ei%,

~15!

xi ,i 1 j5 intS j

g D for all j ,N, if ei5max$ei%. ~16!

Thus, using Eq.~14!, we find

min$ei%5
1

12r LS (
j 51

j 5N21

r int$ j /g%111r LD , ~17!

max$ei%5
1

12r LS (
j 51

j 5N21

r int$ j /g%1r LD . ~18!

Assuming that all barriers in the rang
]Umin(g),Umax(g)] yield the same$N,l i ,ei%, i.e., the same
g, Eqs. ~17! and ~18! determine the length of this interva

FIG. 5. An illustration of an energy profile for the test particl
In this example (r ,U)5(1/2,0.43) which yieldsg55/7. The dotted
lines, which correspond to the five different energy levels in$ei%,
have slope2g. In particular, min$ei% (min$ei%) is represented by
the line on the top~bottom!. This geometrical construction verifie
that xi ,i 1 j5d5 int$ j /g% or d11.
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Since all energies$ei%, particularly min$ei% and max$ei%, are
bounded within@U,U/r @ , for givenU, we haveU<min$ei%
<max$ei%,U/r. On the other hand, we expect that there i
one-to-one correspondence betweeng and theN different
energies in the sequence$ei%. Thus, for given sequence$ei%
~i.e., for giveng), the potential barrier must obey

rmax$ei%<U<min$ei%. ~19!

Using Eqs.~17! and~18! we find that the length of the rang
of U ’s which is compatible with Eq.~19! is given by

DU~g![Umax~g!2Umin~g!5
r L~12r !

12r L
, ~20!

which imposes that the range ofU ’s which correspond to the
sameg5N/L is completely determined by the length of th
period in real space. As shown in Fig. 6, Eq.~20! agrees
excellently with our numerical data.

(d) Completeness of the devil’s staircase. Having derived
Eq. ~20! assuming the unique mapping between inter
]Umin(g),Umax(g)] and $ei%, we can now check the com
pleteness of the present staircase. Suppose thatg getsall the
rational values 0,g<1 for 0,U<r /(12r ), and add all the
intervalsDU(g) together:

S5 (
gPQ

DU~g!5 (
L51

`

f~L !
r L~12r !

12r L
, ~21!

where f(L) is Euler’s totient function, which counts th
number of primes moduloL ~i.e., the number of rationa
numbers of the formN/L, whereN andL do not share any

FIG. 6. Numerically measuredD5Umax2Umin vs g5N/L for
r 50.5 (d) ~for clarity, only those values ofg for which DU
.1024 are shown!. The solid lines display Eq.~20!. Our results for
other values of (r ,U) show similar behavior.
a

l

common factors!. Using the relation(L51
` f(L)r L/(12r L)

5r /(12r )2, ur u,1, which is a generating function forf
@20#, we find that

S5
r

12r
, ~22!

which agrees with Eq.~3! for the allowed range ofU ’s for
which 0,g<1. Thus we find that the commensurate valu
of g completely fill the available phase space inU, i.e., the
present staircase is complete.

(e) Numerical verification of Eqs. (4), (5), and (7).Itera-
tion of Eqs.~4!, ~5!, and ~7! is very easy to implement nu
merically. In the numerical work, however, it is easiest
replace the periodic ‘‘boundary conditions’’ for the energ
by the initial conditione15U, and compute the angle o
repose as the limitg5 limk→`k/( i 51

k l i . This method over-
comes the difficulty of solving Eq.~5!, but does not affect
the results forg since for largek the angle becomes calcu
lated over many cycles. For illustration, the solid lines in F
2~b! show the results forg using the numerical iteration o
Eqs. ~4! and ~7!. Indeed, from this comparison we see th
the iterates ofg agree excellently with the results from th
straightforward simulations. Additionally, the iterates a
ready converge fork5103, which speeds up the computa
tions by a factor of 103, since otherwise one needs to co
sider piles of 106 particles in order to generate a reasona
large system for the determination ofg.

In order to get a more detailed insight into the structure
Eqs. ~4! and ~7!, we repeated these numerical iteratio
monitoring also the energiesei and distances between th
consecutive kinksl i . These simulations confirm numericall
the previous assumption that the recursion relations Eqs~4!
and~7! yield periodic solutions$ei% and$ l i%, for which there
is a one-to-one correspondence betweeng and the variables

$N,l i ,ei%, i.e., there is a mappingg(r ,U)5g̃($N,l i ,ei%).
Specifically, the plateaus in Fig. 2, which yield the sameg
for Umin(g)<U<Umax(g), are due to the fact that the solu
tion for $N,l i ,ei% remains the same for this range ofU ’s.

3. The behavior ofg(r,U): General case

We are now in the position to sketch the behavior
g(r ,U). Although we have considered specifically the ca
0,g,1, i.e., 0,U,r /(12r ), the previous consideration
can be straightforwardly generalized to arbitraryn. For ex-
ample, if (n21)r /(12r ),U,nr/(12r ), the functional it-
eration of the model@Eqs.~4! and~7!# can be generalized to

ei 115~ei11!r l i1~n21!
r

12r
~12r l i !, ~23!

l i5 intS ln@Ũ/~eĩ11!#

ln r
D , ~24!

where

Ũ5U2~n21!
r

12r
, ~25!
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eĩ5ei2~n21!
r

12r
. ~26!

The trivial solution of Eqs.~12! and~13! can be generalized
to

g5~n21!1
1

l ~n!
if r

r l ~n!

12r l ~n!
<Ũ<

r l ~n!

12r l ~n!
,

~27!

where

l ~n!5 intS ln@Ũ/~Ũ11!#

ln r
D . ~28!

Additionally, Eq. ~19! applies for arbitrary (g,n).
Also this general case is easy to solve numerically in

manner similar to the case 0,g,1 explained in the preced
ing subsection. For illustration, the solid lines in Fig. 2~a!
show the results forg using the numerical iteration of Eqs
~23! and~24!. We find that the iterates ofg agree excellently
with the results from the straightforward simulations also
arbitraryg.

In summary, we find both numerically, as well as analy
cally, that for (n21)r /(12r ),U,nr/(12r ), n21,g
,n gets all the rational values in a hierarchical mann
specifically, n2111/(l 11),g<n2111/l , in a segment
of U space,r l (n)11/(12r l (n)11),U<r l (n)/(12r l (n)). The
behavior of the system is determined by a dimension
parameterl (n), which varies nonmultiplicatively as a func
tion of n.

IV. CONNECTION TO A 1D ISING MODEL
WITH LONG-RANGE INTERACTIONS

We find that there is a close connection between
present model and the one-dimensional~1D! Ising system of
Ref. @16#. This section describes the similarities, and the d
ferences, between these models.

Reference@16# deals with the HamiltonianH,

H5(
i

HSi1
1

2(i , j J~ u i 2 j u!~Si11!~Sj11!, ~29!

where the first summation is overK spins, Si561, in a
chain with periodical boundaries,H is the magnetic field,
and the second sum counts all the pairs of the ‘‘up’’ sp
interacting via a long-range interactionJ, which only de-
pends on the mutual distance between the spins. Assum
that each site may occupy only a single spin, the problem
minimizing the classical HamiltonianH is equivalent to ar-
ranging a number of charged particles onK sites such that
the interaction energy is minimized. In this case an occup
~vacant! site corresponds toS51 (S521). The latter prob-
lem is solved by Hubbard@21# and by Pokrovski and Uimin
@22#, yielding that the arrangement of the up spins is perio
at the ground state ofH, such that there exists a unit cell o
lengthL, with N up spins, which repeats itselfad infinitum.
These periodic structures arise from the competition betw
different spatial periodicities, and the fraction of the
spins, q5N/L, may have all possible rational values. A
a

r

-

:

s

e

-

s

ng
of

d

c

n

shown in Ref.@16#, a commensurate phase characterized b
given q is stable as long as it costs energy to flip any sp
and rearrange the new configuration to minimize the ene
Specifically, Ref.@16# calculates these energy costs for a sp
flipping, and finds them positive for a range of fieldsH,
whose width is given by (K→`)

DH~q5N/L !52(
p51

`

pL@J~pL11!1J~pL21!22J~pL!#.

~30!

Equation~30! should be compared with Eq.~20!, DU5(1
2r )(p51

` r pL. This comparison suggests that there is a cl
of interactionsJ for which the Ising model behaves similarl
to the present model.

For example, assuming that the interaction has a~some-
what artificial! form J(x)5(12r L)r x, we find that Eq.~30!
reads

DH52
12r L

~12r !2 (
p51

`

pLrpL2152L
12r

r

r L~12r !

~12r L!
.

~31!

Therefore, for this specific choice of interaction potentialJ,
the stability region for the Ising model is similar to our st
bility condition Eq. ~20!, apart from the prefactor 2L(1
2r )/r . Additionally, using Eq.~14!, we find that the average
energy in the sequence$ei% can be written in a form

^ei&' (
1< i , j <N

J~ u i 2 j u!1
r L

12r L
. ~32!

This suggests that there exist a set of analogous quantitieg,
U, andei are analogous to magnetizationM (M52q21),
magnetic fieldH, and interaction energy of a spin, respe
tively.

However, the most important difference between the
models is that the specific mechanism which determines
location of the commensurate phase boundaries are defin
different. For the Ising model the stability region is dete
mined by the energy cost of the spin flipping, whereas
stability criterion for the present model is the requireme
that we need to find a self-consistent solution for$N,l i ,ei%,
which is periodic in the energy space. In fact, we find that
smooth surface which has only steps of two different si
minimizes the fluctuations of the energy, i.e., the proper
lution for the grain energies$ei% needs to be bounded be
tween@U,U/r @ .

V. CONCLUSION

We have studied a simple model for the surface o
granular heap. The model includes the considerations of
dissipation of the energy in the particle-particle collision
and the sticking of the particles to the pile. For given (r ,U),
this deterministic model evolves into a steady state, fr
which physical observables, such as the angle of repose,
be determined. Within this simple model, the dependence
g(r ,U) may therefore enlighten how the angle of repo
depends on the properties of the granular system, includ
the shape (U) and dissipation (r ) between the granulates.
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We find that the angle of repose of the pile behaves a
complete devil’s staircase, and present numerical and
lytical considerations which characterize the properties
this staircase. We find that the sizes of the steps on the
face depend on (r ,U) in a complicated manner, and th
results to a fascinating hierarchical structure in theg(r ,U).
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APPENDIX: OUTLINE OF THE EXPLICIT SOLUTION
FOR Umin,max

This appendix gives the details of the solution ofUmin,max
for several values ofg. In particular, we cover the cases fo
which g5(11p)/@(11p) l 11#, where eitherp or p21 is an
integer. We do not consider the casep50, since that corre-
sponds to the trivial solution of Eq.~12!. Additionally, the
most general solution would correspond to the considerat
wherep is an arbitrary rational number, but we do not d
cuss that solution here.

For nonzerop, we have r l 11/(12r l 11),U,r @r l /(1
2r l)]. Since there are no integers which satisfy Eq.~10!, the
steps of the surface appear with two different intervalsl and
l 11, where l 5 int$ ln@U/(U11)#/lnr%. For any ei , l i may
have either one of these values, depending on which ch
fulfills the conditionU<ei 115(ei11)r l i<U/r . Let m (n)
be the number of intervals of lengthl ( l 11), for which
choiceL5(m1n) l 1n, g5(m1n)/@(m1n) l 1n#, and the
periodic boundaries readem1n115e1. Using Eq.~4! we find

em1n115~e111!r L1 (
p51

m1n

r (q5p
m1n l q5e1 . ~A1!

Additionally, due to the periodic boundaries, we may choo
that e1 is the smallest energy in the sequence$ei%.

Since Eq.~A1! is relatively complicated, we shall limi
ourselves to a very special case of the energy landscap
what follows we consider only the case wherem51 or n
51 „this corresponds tog5(11p)/@(11p) l 11#, with p
5m/n…. After this simplification in the algebra one has th
freedom to setl i5 l ( l i5 l 11) for i<m ( i .m). However,
re

ur
a
a-
f

ur-

.

n

ns

ce

e

In

this assumption is validonly if the energy landscape has th
kind of very simple structure where there is only one hill
the sequence$ei%.

In other words, starting frome1 close toU, there are first
m steps with intervalsl , where m is the smallest intege
which obeys

U/r ,~em1111!r l<U/r 2, ~A2!

with

max$ei%5em115e1r ml1 (
p51

m

r pl5e1r ml1r l
12r ml

12r l
.

~A3!

Subsequently, there aren steps with intervalsl 11, and the
energy decreases back to the original value

en1m115em11r n~ l 11!1 (
p51

n

r p~ l 11!

5em11r n~ l 11!1r l 11
12r n~ l 11!

12r l 11

5e1r ~m1n!l 1n1r nl1n1 l
12r ml

12r l

1r l 11
12r n~ l 11!

12r l 11
5e1 . ~A4!

After a straightforward calculation one finds that

min$ei%5e15
r l

12r ~m1n!l 1nS r nl1n
12r ml

12r l
1r

12r nl1n

12r l 11 D .

~A5!

Equations~A3! and ~A5! determine the range of the pa
rameters,Umin5rmax$ei%<U<min$ei%5Umax, which corre-
spond to the sameg5(11p)/@(11p) l 11# ~with p
5m/n). However, since we have assumed a special form
the energy landscape, Eqs.~A3! and~A5! are valid only if at
least eitherm or n is unity. This implies that eitherp or p21

is an integer. For example, ifp51, we find thatg52/(2l
11) for

r l 11

12r 2l 11
~11r l 11!<U<

r l 11

12r 2l 11
~11r l !. ~A6!
-
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