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We study a simple lattice model for granular heap, which aims at calculating the macroscopic angle of
repose from the microscopic grain properties. The model includes the effects of dissipation of the energy in the
particle-particle collisions, and sticking of the particles to the pile. We obtain that, due to the discretization of
the space, the angle of repose of the pile behaves as a cordpléts staircaseas a function of the model
parameters. We present numerical and analytical considerations which characterize the properties of this
staircase[S1063-651X98)09606-9

PACS numbd(s): 81.05.Rm

[. INTRODUCTION staircase which has the peculiar property that the function
varies only on a set of zero linear measure. Such staircases
The heap of dry granular material is of interest for prac-have been encountered repeatedly in many contexts of very
tical applications, but also as a paradigm in fundamental redifferent physical nature: for example, current-voltage char-
search. Typical questions includize or shapesegregation acteristics of Josephson junctiofisl,12, superfluid density
[1-3), avalanche§4,5], and the shape of the heap in two andin “He thin films[13], and polytypic periodic structures in
three dimensionf6—8]. Indeed, sandpiles are almost perfectseveral metallic compounds, such as;Kg, CuAu, and
cones with a well-defined angle of repose, which depends ofrUsPt[14]. For a discussion about devil's staircases in these,
gravity and on the characteristics of the material, includinggnd other, physical systems see Hé&b]. There are also at
density [9], humidity [10], packing history, and boundary least two theoretical models where such devil's staircases
conditions[8]. However, to our knowledge, no systematic emerge. The first is a one-dimensioraD) Ising system
experimental study of the dependence of the angle of repod#ith long-range repulsive interactiorjd6], for which the
on the material properties, like the restitution coefficient, theatio of the up and down spins varies as a complete devil's
shape, or the surface roughness of the grains, has been pé&faircase as a function of the external field. The second is the
formed. It is also a striking fact that the calculation of the axial next-nearest-neighbor ISingANNNI) model [17],
macroscopic angle of repose from the microscopic propertie¢hich may qualitatively explain the polytypic structures in
of the grains has eluded solution. Additionally, watchingthe above mentioned metallic compourids].
carefully, one notices that at the very bottom of a two- In this work we present numerical and analytical consid-
dimensional heap the surface profile has a logarithmic corerations which characterize the properties of the present
rection to this simple conelike behavifs]. staircase. We find that the sizes of the steps on the surface
Understanding these phenomena poses a major challengepend on the properties of the granulates in a complicated
for research in granular media. In this respect simple modelg1anner, and this results in a fascinating hierarchical structure
have an important role by allowing one to investigate thein the angle of repose. We also discuss some analogies which
system in great detail. They also often serve as a basis téUise between the present model and the Ising model men-
wards more realistic simulations of the granular systems. Iioned above.
fact, the use of such simple systems has already revealed The rest of this paper is organized as follows. We intro-
many successful characterizations of the crucial interactionguce the model in Sec. I, where the basic concepts are dis-
underlying different phenomena; for example, R¢is-3,6. cussed in more detail. This section is followed by the pre-
In this paper we study a simple lattice model for a pile ofsentation of our numerical and analytical results in Sec. Il.
dry granular medigsay sand, for exampleThe phenomeno- The connection between the current model and the one-
logical model includes the considerations of the dissipatiorflimensional Ising model are discussed in Sec. IV. Finally,
of energy in the particle-particle collisions, and the stickingthe paper is concluded in Sec. V.
of the particles to the pile. At the steady state this determin-
istic model evol\(es_ toa pile, where the angle of repose de- Il. MODEL
pends on the dissipation and the shape of the granulates.
Thus the present model may help to understand how such For simplicity, we consider a one-dimensional pile where
properties affect the angle of repose in heaps of granulatethe particles are located at=0,1,2 ..., measured in the
To our knowledge, this constitutes the first model which at-units of the particle diameteisee Fig. 1L We monitor the
tempts to calculate the macroscopic angle of repose directlgeight of the pileh(x), which also denotes the current num-
from the microscopic grain properties. ber of the particles at the position and, in particular, the
In our model, we find that, due to the discretization, themacroscopic angle of the repoge which is the average
angle of repose of the pile behaves as a complietél's  slope of the pile.
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this simple model, the dependenceydf,U) gives informa-

tion on how the angle of repose depends on the properties of
! the granular system, namely, the shapB @nd dissipation

-' (r) between the granulates.

92>U

(b) : ll. RESULTS

The most accessible physical observable is the angle of
repose, which characterizes the shape of the pile, as a func-
tion of the physical parameterg=y(r,U). To determine
v(r,U), we have performed numerical simulations as well as
analytical calculations.

I

L . . A. Numerical results
FIG. 1. Schematic view of the evolution of the pil@) Gray

particle enters the system with the energy and black particle is We performed extensive numerical simulations collecting
falling down the pile with energye,. As shown by arrows, the data for several values of (U) by fixing r and varyingu.
particles try to propagate to the next location in the pi®. The  Our first observation is that, indeed, the model evolves to-
particles gain energy in the gravitational field, but a fraction of thewards a steady state which has a well-defined macroscopic
energy is dissipated in the particle-particle collisions. Final energyangle of repose, whose value depends on the physical char-
e/ =(e+Ah)r (i=1,2), is compared to the threshold value acteristics of the grains. In addition, our simulations show
Heree;>U and gray particle moves on to=1, bute,<U, hence  that y does not depend on the initial energy=U, as long
the black particle remains in its previous positi¢Ror illustration as it is fixed. The effects which ariseef is chosen from a
only, in practical simulations we follow only one particle at a time. (say, bimodal distribution are discussed elsewhéi@)].
) ) The results fory(r,U), as a function olJ(1—r)/r, are
There is a constant flow of particles to the left hand edgeghown in Fig. 2. A striking feature of this figure is that
i.e., tox=0, for which it is convenient to scale time such shows a constant value for a wide rangeJofor a fixedr. In
that the rate of the particle flow equals one particle per Um?act, these numerical results indicate thatr,U) is de-
time. These particles enter the system with a fixed initialgcriped by a devil's staircase, which varies only on a set of
energyey. The initial energy is assumed to be independent 0berg |inear measure. This is due to the fact that since the
h(0), and sufficiently large as compared to other energyneight of the pile and the positionare restricted to integer
scales in the mode(see beloy, which corresponds to an yajyes,y may achieve only rational values. However, since
experimental situation where the particles are dropped wethere is no othea priori restriction fory, we assume below
above the pile. - _ _ that y may have all rational values.
~ The evolution of the pile is determined by energetic con-  po jjustration, Fig. 3 shows a typical steady state profile
siderations. Consider a particle which sits at positionith of the sandpile. It can be seen thatlepends on the steps on
energye; (for illustration, see Fig. L In order to propagate he surface, i.e., regions wheh>0. Specifically, we find
to locationx+1, the particle has to overcome a potential nymerically that the steady state of the model is a periodic
barrierU, which simulates the friction between the moving strcture for which the surface profile descends by repeating
particle and the pile. Thus mainly considers the roughness gne “unit cell” of steps along the pile. The angle of repose

and the shape of the particles. Should the particle succeed |§ getermined by the numbeN] and the sizes of these steps
moving to x+1, it would (typically) gain energy in the i the unit cell of lengthL.

gravitational field byAh=h(x) —h(x+ 1), but a fraction of
the total energy becomes dissipated in the collision with the
particles in the pile ak+1. This energy dissipation in the
particle-particle collisions is determined by the coefficient of  In this subsection we present our analytical calculation of
the restitutionr <1, which is a material dependent constant.the y(r,U). We start by deriving the connection between the

Thus the energy of the particle after movingxte 1 would  Sizes of the steps of the surface and the magnitude (ke
be given by Sec. llIB 1. This leads us to conclude that for noninteger

values ofy, int(y) =intfU(1—r)/r], where int§k) gives the
e/ =(e;+Ah)r. (1)  integer part oi. Therefore, for simplicity, we continue with
a detailed analysis of the case<@<1 (see Sec. IlIB 2
This energy is compared with the potential bartierIf € These calculations are performed in the “energy space,”
=U, the particle propagates to+ 1 conserving its energy, where we consider the energy of a test particle which falls
and similar considerations are repeated in order to decide if lown the pile. Guided by our numerical simulations, we pos-
may propagate forwards. However, éf <U, the particle tulate that these energies form a periodic sequeigh
sticks in the current locatiom(x) is increased by unity, and which has the same periodicity as the surface profile. Using
a new particle is released to the systenxat0. this assumption we are able to form a closed set of equations,
For given ,U), this deterministic model evolves into a from which the behavior ofy(r,U) can be determined. We
steady state, from which physical observables, such as theerify numerically that this theoretical reasoning is in agree-
global angle of repose(r,U), can be determined. Within ment with the simulation results. Additionally, the consider-

B. Analytical results
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FIG. 2. (a) Numerically measured angle of repogg ,U) as a function ofJ(1—r)/r forr=0.3 (@, dashed ling 0.5 (O, dashed-dotted
line), 0.7 (¢, dotted ling, andr =0.9 (¢, solid line). The lines display the/(r,U) as calculated from the numerical iteration of E(&3)
and(24) (see the text for detailsIn particular, the data agree well with E®), which givesn—1<y<n asn—1<U(1-r)/r<n. (b) The
same data as ifa), but enlarged to show the range<@'<1 in more detail. The lines are from numerical iteration of Eg$.and (7). (c)

The same data as ifb), but y plotted vsU=U(1—r")/r'*1 in order to show the structure of the staircase in the rangd(1—r'*1)
sUsr'/(l—r'), wherel =int{In[U/(U+1))/In r}, more clearly. From the top to bottom, the data hbwe,2,3. If I<U<1/r, y=1/, but
for (1—r')/(1—r'""1)<U<1 we find a nontrivialy in the range 1A+ 1)<y<1/.

ations of Sec. Il B2 can be straightforwardly generalizedbefore steps of size can be generated. Equati¢®) also
for all y>0. These extensions to genesahre summarized states that the largéy the larger steps there are on the sur-

in Sec. Il B 3. face. In particular, atU=[(n—21)r]/(1—r) we have only
. . steps of sizen—1, since no steps of size can be created
1. The connection between the step sizes gnd yet, but all the smaller steps are growing since there is a

Consider a particle which is falling down the surface andP0ssibility that a particle may not gain enough potential en-
encounters a step of height-1=0. The condition that the €9y to overcome the energy barrier. By induction we deduce
particle remains at the current positiband creates a step of that for
height n is given by e/ =(e;+Ah)r=(g+n—1)r<u.
However, we know thag,=U because the particle has been
able to propagate to locatian Using this information, we
find the estimate, U+ (n—1)]r<U, which yields that

n—1)r nr
( ) U<

1-r 1-r’ 3

the steady state surface has a mixture of steps of sizes
—1 andn. The proper physical picture of the inequality Eqg.
>(”_ r (3) indicates that fokd =(n—1)r/(1—r) all sites have a step

U 1-r @ of sizen—1, i.e.,, y=n—1. However, for largeilJ, also
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FIG. 4. Notation used in the analytic calculations. This example
0 corresponds to the simulated surface shown in Fig. 3. The unit cell

0 500 1000 1500 of lengthL=7 hasN=5 steps, which are labeled using indiex
=1,... N. These steps have distandgs which obeyL=Z2l;;
X herel,=1,=1,=1, andl;=I5=2. The energy of a test particle on
FIG. 3. A simulated surface profile after %articles. In this ~ the top of théith step is denoted bg; . We aim at finding a periodic
example ¢,U)=(1/2,0.43) which yieldsy=5/7. The inset shows Solution for the energies using the boundary condition (&j.
an enlarged portion of the surface for 500<<520, which reveals
the periodic small scale structure of the surface in more detail. Which describes the periodicity of the surface in the “energy
space.” We emphasize that our assumption, £, is a
steps of sizen appear, and their density increasedJagrows  strong relation which determines the number of algebraically
towards the upper limit of inequality E¢3), i.e., y—n as independent variables in the sequenfgs$, {I;}.
U—nr/(1—r). These results agree well with our numerical We can solve inequality4) for |;, and find that the dis-

data shown in Fig. @). tances between the steps are determined; by
Equation(3) indicates that the sizes of the steps on the

surface are determined hy. Since all the sites have a step InfU/(g;+1)] InfU/(g;+1)]

of sizen—1 orn, this also demonstrates that in large length " hnr I<li= " Inr ©®)

scales the steady state surface is very smostle Fig. 3,
and the average angle of repogés a well-defined quantity. Becausd;’s may have only integer values, E@) yields

2. Analysis of the case 9y<1 In[U/(e+1)]
li=i ( : )

(a) Formulation of the problem in terms of the functional
iteration. We now turn to a more detailed analysis for
0<vy<1 [see Fig. ?)]. As mentioned above, we find nu-
merically that the typical feature of the model is that the
steady state of the pile forms a periodic construction, where N
there areN=1 steps, of size onésince 0<y<1), distrib- y(r,U)= g (8
uted along a basic unit of length. Obviously we havey E N
=N/L, whereN andL do not share common factors because ="

L is chosen to be the size of the shortest repeatable unit.

Now, it is important to notice that such a periodic steadyjs given by solving Egs(4), (5), and (7) for unknowns
state surface can be quantitatively characterized by conside{NJi el

ing the energies of a test particle which is falling down the () Explicit solution of Egs. (4), (5), and (7)nfortu-
surface. This test particle is allowed to propagate through thgately, due to the fact that may have only integer values,
unit cell, and we consider specifically the eneggyon the  the explicit solution of Eqs(4), (5), and (7) for y(r,U)
top of theith step in the unit celfsee Fig. 4. Guided by our z}({N,Ii &) is possible only in the simplest cases. In par-

Inr

For any (,U), the angle of repose

numerical simulations, we expect that the sequence of enef iar if N=1

gies{e;} has the same periodicity ™ steps as the surface ' '

profile. Thus we need to solve the recursion relationefgr Use,—(e,+1)rli=e,<U/r )
=27 \= - = .

U<e . ;=(e+Drli<Ulr, 4 . .
i+1=(&+1) @ We can solve Eq9) similarly to Eq.(6), and using the fact

where |, is the distance between thé,i(+1)th steps,L  thatUse;<U/r, we find

=EiN:1Ii , using periodic “boundary condition”

In[U/(U+1)]__In[U/(U+1)]

= , 10
eN+1:e1, (5) |n r L |n r ( )
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Sincel,; may have only integer values, EQ.0) implies that N=5

In[U/(U+1)])
Inr ’

l,=y l=l=in

(12

given that the periodic boundary conditiond<e,=e¢;
=r'/(1-r')<U/r, are satisfied, i.e., the barrier has to obey

r r “
Unin(11)=r <Us T = Umad ). (13 L=7 max

) ) . . . FIG. 5. An illustration of an energy profile for the test particle.
By inspection one realizes that EQL3) is equivalent to the  n this example (,U)=(1/2,0.43) which yieldsy=5/7. The dotted
condition that there exists an integerwhich satisfies Eq. |ines, which correspond to the five different energy levelgep,
(10). If such an integer exists, Eq(12) represents the exact have slope-y. In particular, mifie;} (min{e;}) is represented by
solution for Eqs(4) and(7), y~1=I. Indeed, our data shown the line on the togbottom). This geometrical construction verifies
in Fig. 2(c) are fully compatible with this expectation. This thatx; ;,j=d=int{j/y} ord+1.
also shows that at least for the particular case
{N,I; ,e}={1]),r'/(1—r")}, the solution of Eqs(4), (5), and  (r,U)=(1/2,0.43), which parameters give the depicted sur-
(7), i.e., y=11, depends orJ only via the dimensionless face profile withy=5/7. We take every step and draw a line
parametet. through the hip of that step with slopevy. In this example,

For other values ofr(U) one needs to find a solution this kind of the procedure gives that there are five distinct
with higher periodicity. Since the sequeng®} is periodic  parallel lines which are tangential to the surface. This repre-
with a periodN, the recursion relation Eq9) can be gener- sents the fact that five consecutive steps, or five different
alized to energiese;, define the smallest repeatable unit of the sur-

o face. It is easy to see that in the general case therd atech
1 1 . lines, which represent thdl different energies in the se-
1_rLJZl e, (14 qguence{g;}. In particular, since the energy increasee-
creasepif I;=I1 (I;=1+1), one realizes that the minimum
wherex; ;| is the distance between thir and {+j)th step, ~(maximum energies ofie;} are represented by the highest
particularly x; ; \n=L, and allN energies in the sequence (lowes? lying lines. By inspection we find that this geometri-
{e;} are different. This oscillatory behavior §&} is due to ~ cal construction shows that generally;,;, for j <N, may
the lack of the matching distanteaccording to Eq(10). In ~ have two values, eitheq ;  j=d=int{j/y} ord+1, depend-
this case the steps of the surface appear with two differerif?ld on whether the corresponding line cuts the tip of the (
intervals| and|+1, where each; may have either one of *]j)th step below or above. However, one should note that
these values, depending on that which fulfills the conditionsince the lines cut the tip of a step exactly after ersteps
U<e.,,=(e+1)r'i<U/r. Such an interplay between the We have always;.y=L. Let us now consider specifically
I,’s leads to a nontrivial angle of repose(1) " '<y<|~1if ~ the minimum and maximum energies which have
r@—r'" Y <u<r[r'/(1-r")] [see Fig. 2o)].

(c) The regions of stability for Egs. (4), (5), and (The
trivial solution given in Eqgs.(12) and (13) gives a solid
reason to expect that generally, for fixedhere is a range of (15
potential barriers U in,Umad, Which has the same solution
{N,l;,e;}, and therefore yields the same angle of repose.
However, the explicit solution fol i, max IS pOssible only
by considering the general form of the sequefgg. In the
Appendix we give a formula fol yinmad 7.1.1) if y=(1  Thus, using Eq(14), we find
+p)/[(1+p)l +1], where eithep or p~ ! is an integer, but

€=

xiirj=intl =|+1 forall j<N, if e=min{e},

xi'iﬂ-:int(];) forall j<N, if ee=maxXe;}. (16)

the general solutior(for which p is an arbitrary rational ) 1 [Tt it} +1 oL

numbej of U in maxbECOMeS very tedious, and not at all that min{e;} = 1L le rEER 17)

informative. These complications are mainly due to the fact

that we do not know howN could be simply determined i=N-1

from the grain propertiesr(U). maxe} = ( E pintli/v 4 pL| (18)
In this case, however, a lot of information is revealed by 1—rt\ =

considerations of the minimum and maximum valueg;tf

alone. For this purpose the analysis of the sequérgeis Assuming that all barriers in the range
easiest to illustrate using a geometrical construction. For eXtU nin( v),Umad )] yield the samg[N,l; e}, i.e., the same
ample, Fig. 5 shows the result of the computer simulation aty, Eqs.(17) and (18) determine the length of this interval.
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FIG. 6. Numerically measured =U 5= Uin VS y=NI/L for
r=0.5 (@) (for clarity, only those values ofy for which AU
>10"* are showh The solid lines display Ed20). Our results for
other values of i(,U) show similar behavior.

Since all energiege;}, particularly midg} and maxe}, are
bounded withif U,U/r[, for givenU, we haveU <min{e}
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common factors Using the relation=]"_, ¢(L)rt/(1—rt)
=r/(1-r)?, |r|<1, which is a generating function fap
[20], we find that

(22)

which agrees with Eq(3) for the allowed range ot)’s for
which 0<y=<1. Thus we find that the commensurate values
of y completely fill the available phase spacelUni.e., the
present staircase is complete.

(e) Numerical verification of Egs. (4), (5), and (THera-
tion of Egs.(4), (5), and(7) is very easy to implement nu-
merically. In the numerical work, however, it is easiest to
replace the periodic “boundary conditions” for the energy
by the initial conditione;=U, and compute the angle of
repose as the Iimityzlimkﬁwkli!‘:lli. This method over-
comes the difficulty of solving Eq5), but does not affect
the results fory since for largek the angle becomes calcu-
lated over many cycles. For illustration, the solid lines in Fig.
2(b) show the results foy using the numerical iteration of
Egs. (4) and (7). Indeed, from this comparison we see that
the iterates ofy agree excellently with the results from the
straightforward simulations. Additionally, the iterates al-
ready converge fok=10°, which speeds up the computa-
tions by a factor of 1%) since otherwise one needs to con-
sider piles of 18 particles in order to generate a reasonably
large system for the determination f

In order to get a more detailed insight into the structure of
Egs. (4) and (7), we repeated these numerical iterations

=maxe}<U/r. On the other hand, we expect that there is amonitoring also the energies and distances between the

one-to-one correspondence betwegrand theN different
energies in the sequenge;}. Thus, for given sequende;}
(i.e., for giveny), the potential barrier must obey

rmaxe<U=min{g}. (19
Using Egs.(17) and(18) we find that the length of the range
of U’s which is compatible with Eq(19) is given by

rt(1-r)

AU(')’)EUma%('}’)_Umin(')’):?y (20

which imposes that the range dfs which correspond to the

consecutive kinks; . These simulations confirm numerically
the previous assumption that the recursion relations &gs.
and(7) yield periodic solutionge;} and{l;}, for which there
is a one-to-one correspondence betwegesnd the variables
{N,l;,e}, i.e., there is a mapping/(r,U)=7({N,l;,e}).
Specifically, the plateaus in Fig. 2, which yield the satne
for Unin(Y)=<U=<U (7). are due to the fact that the solu-
tion for {N,l; e} remains the same for this range Wfs.

3. The behavior ofy(r,U): General case

We are now in the position to sketch the behavior of
v(r,U). Although we have considered specifically the case

samey=N/L is completely determined by the length of the 0<¥<1, i.e., 0<U<r/(1-r), the previous considerations

period in real space. As shown in Fig. 6, H§O) agrees
excellently with our numerical data.
(d) Completeness of the devil's staircastaving derived

can be straightforwardly generalized to arbitraryFor ex-
ample, if (n—L)r/(1—r)<U<nr/(1-r), the functional it-
eration of the mod€lEgs.(4) and(7)] can be generalized to

Eq. (20) assuming the unique mapping between interval

JUmin(7) Uma{ ¥)] and {e;}, we can now check the com-
pleteness of the present staircase. Supposeythatsall the
rational values & y<1 for O<Us=r/(1—r), and add all the
intervalsAU(y) together:

o0

L 1—
S g0

= 1—["‘ ’ (21)

S=2 AU(y)=
7eQ

where ¢(L) is Euler’'s totient function, which counts the
number of primes moduld (i.e., the number of rational
numbers of the fornN/L, whereN andL do not share any

ei+1=(ei+1)r'i+(n—1)%(l—r'i), (23
- (In[U/(ei+1)] | 0
Inr
where
~ r
U=U—(n—1)ﬁ, (25)
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. r shown in Ref[16], a commensurate phase characterized by a
e=e—(n-1)7— (26)  givenq is stable as long as it costs energy to flip any spin,
and rearrange the new configuration to minimize the energy.
The trivial solution of Eqs(12) and(13) can be generalized Specifically, Ref[16] calculates these energy costs for a spin
to flipping, and finds them positive for a range of fielt
whose width is given by — o)
1 . rI(n) ~ rI(n)
y=(n—-1)+ ) if r 1 m sUs o

©

AH(g= N/L)——ZZl pL[J(pL+1)+J(pL—1)—2J(pL)].
p=
(30

Equation(30) should be compared with E¢20), AU =(1
—r)Ei;:lrpL. This comparison suggests that there is a class
(28) of interactions] for which the Ising model behaves similarly
to the present model.
Additionally, Eq.(19) applies for arbitrary {,n). For example, assuming that the interaction hasame-
Also this general case is easy to solve numerically in avhat artificia) form J(x)=(1—r")r*, we find that Eq(30)
manner similar to the case<Oy<1 explained in the preced- reads
ing subsection. For illustration, the solid lines in Figa)2

where

I(n)=int(w .

show the results fo using the numerical iteration of Egs. H=2 1-rt 2 erpL—1:2L£ rH(1-r)

(23) and(24). We find that the iterates of agree excellently (1-r)? p=1 ro(a-rb’
with the results from the straightforward simulations also for (32
arbitrary vy.

In summary, we find both numerically, as well as analyti- Therefore, for this specific choice of interaction potendial
cally, that for i—1)r/(1—r)<U<nr/(1-r), n—1<y the stability region for the Ising model is similar to our sta-
<n gets all the rational values in a hierarchical mannerbility condition Eq. (20), apart from the prefactor L1
specifically, n—1+1/(1+1)<y<n—1+1/, in a segment —T)/r. Additionally, using Eq(14), we find that the average
of U space,r'M+1/(1—r'M+l<y<r'Mj(1—r'M). The  energy in the sequende;} can be written in a form

behavior of the system is determined by a dimensionless L

parametet (n), which varies nonmultiplicatively as a func- o)~ Iliil e r 32

tion of n. (&) 1s;:jsN ([i—=il) 1_ L (32
IV. CONNECTION TO A 1D ISING MODEL This suggests that there exist a set of analogous quantties:

WITH LONG-RANGE INTERACTIONS U, ande; are analogous to magnetizatidh (M =2q9—1),

i . . magnetic fieldH, and interaction energy of a spin, respec-
We find that there is a close connection between thgje|y.

present model and the one-dimensiofid) Ising system of However, the most important difference between these

Ref.[16]. This section describes the similarities, and the dif-yodels is that the specific mechanism which determines the

ferences, between these models. location of the commensurate phase boundaries are definitely
Reference 16] deals with the Hamiltoniaft, different. For the Ising model the stability region is deter-

1 mined by the energy cost of the spin flipping, whereas the
H=, HS+=>, J(|i —iD(S+1)(S+1), (29 stability criterion for the present model is the requirement
[ 277 that we need to find a self-consistent solution {fd;|; ,e;},
] o . ) which is periodic in the energy space. In fact, we find that the
where the first summation is ové¢ spins,§==*1, in a  smooth surface which has only steps of two different sizes
chain with periodical boundarie$] is the magnetic field, minimizes the fluctuations of the energy, i.e., the proper so-

and the second sum counts all the pairs of the “up” spinytion for the grain energie$e;} needs to be bounded be-
interacting via a long-range interactiah which only de-  tween[U,U/r].

pends on the mutual distance between the spins. Assuming
that each site may occupy only a single spin, the problem of
minimizing the classical Hamiltonia®( is equivalent to ar-
ranging a number of charged particles Knsites such that We have studied a simple model for the surface of a
the interaction energy is minimized. In this case an occupiegranular heap. The model includes the considerations of the
(vacanj site corresponds t6=1 (S=—1). The latter prob- dissipation of the energy in the particle-particle collisions,
lem is solved by Hubbarf1] and by Pokrovski and Uimin and the sticking of the particles to the pile. For givenl),

[22], yielding that the arrangement of the up spins is periodichis deterministic model evolves into a steady state, from
at the ground state dft, such that there exists a unit cell of which physical observables, such as the angle of repose, can
lengthL, with N up spins, which repeats itsefl infinitum be determined. Within this simple model, the dependence of
These periodic structures arise from the competition between(r,U) may therefore enlighten how the angle of repose
different spatial periodicities, and the fraction of the updepends on the properties of the granular system, including
spins, q=N/L, may have all possible rational values. As the shapel{) and dissipation) between the granulates.

V. CONCLUSION
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We find that the angle of repose of the pile behaves as this assumption is validnly if the energy landscape has this
complete devil's staircase, and present numerical and an&ind of very simple structure where there is only one hill in
lytical considerations which characterize the properties othe sequencée;}.
this staircase. We find that the sizes of the steps on the sur- In other words, starting frore; close toU, there are first
face depend onr(U) in a complicated manner, and this m steps with intervald, wherem is the smallest integer
results to a fascinating hierarchical structure in ii{e,U). which obeys

| 2
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Subsequently, there aresteps with interval$+ 1, and the

APPENDIX: OUTLINE OF THE EXPLICIT SOLUTION energy decreases back to the original value

FOR U min,max o1 n -
— n

This appendix gives the details of the solutionUfin max €nems1=Cmeal " le ey
for several values of. In particular, we cover the cases for
which y=(1+p)/[(1+ p)| +1], where eithep orp ! is an NPT pn(+b
integer. We do not consider the cgse 0, since that corre- =Cm+af +r o1
sponds to the trivial solution of Eq12). Additionally, the
most general solution would correspond to the considerations —yml
wherep is an arbitrary rational number, but we do not dis- =er(Mrmitn
cuss that solution here. 1-r

Ilzor nonzerop, we have r'“/(l—_r'+1)<_U<r[r'/(1 1 D)
—r")]. Since there are no integers which satisfy Ed), the RS —e,. (A4)
steps of the surface appear with two different intervadsd 1-r'*1t

[+1, wherel=int{In[U/(U+1))/Inr}. For anye;, |; may . , ,
have either one of these values, depending on which choic®fter a straightforward calculation one finds that

fulfills the conditionU<eg,, ;= (g+1)r'i<U/r. Letm (n) | / 1Ml q_pni+n
be the number of intervals of length(I+1), for which min{e} =e,= pnl+n +r
choiceL=(m+n)l+n, y=(m+n)/[(m+n)l+n], and the 1—r(mmi+n| 1—r! 1—r'*t1
periodic boundaries reaa,, . ,. 1=¢€;. Using Eq.(4) we find (A5)
mn Equations(A3) and (A5) determine the range of the pa-
emin+1=(€r T Drt+ le r¥a-p la=e,. (A1) rametersU,,=rmaxe}<U<min{e}=U,., Which corre-

spond to the samey=(1+p)/[(1+p)l+1] (with p
Additionally, due to the periodic boundaries, we may choose=M/n). However, since we have assumed a special form of
thate, is the smallest energy in the sequerieg. the energy landscape, Eq43) and(A5) are valid only if at
Since Eq.(A1) is relatively complicated, we shall limit east eithem or n is unity. This implies that eithep or p~*
ourselves to a very special case of the energy landscape. If an integer. For example, g=1, we find thaty=2/(2I
what follows we consider only the case where=1 orn  +1) for

=1 (this corresponds toy=(1+p)/[(1+p)I+1], with p +1 l+1
=m/n). After this simplification in the algebra one has the ' (1+r'*Y)<u= (1+r)).  (A6)
freedom to set;=1 (I;=1+1) for i<m (i>m). However, 1-r2+1 1—r2*1
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